Trout and Native Fish Species Interactions Resource

This resource is a condensed version of the thesis 'Risk Assessment and Mitigations of the Potential Impacts of trout Predation on New Zealand's Indigenous Fish Species' (2022) by Ami Coughlan¹. It is primarily for resource managers to support them to implement the National Policy Statement for Freshwater Management 2020 (NPS-FM), specifically policies 9 and 10.

This resource provides a list of indigenous fish species that have been assessed against a Risk Assessment Matrix (RAM) criteria (Appendix 2) to determine the likely risk of trout species interaction having a negative impact on their population. This resource also includes strategies on what to do about it, and how to minimise any risks (Appendix 1).

Each species table details the risks of trout predation having a negative impact on native freshwater fish populations based on available biological and ecological research in flowing water. Each table gives a ranking of either high, moderate, or minor risk. Each table is ordered from the most endangered species down to species that are not threatened².

At a high level, the response to each level of risk is set out in the table below. This is high level advice, as a difference response may be appropriate in specific contexts, depending on the local information and circumstances. You should discuss the local response in detail with the Department of Conservation and Fish & Game.

High risk of negative	- Talk to the statutory authorities (F&G and DoC) and tangata		
interactions with	whenua about the specific species interaction		
trout	- Refer to Appendix 1 on the tools to minimise possible impacts of		
	trout predation on indigenous freshwater fish species in rivers		
Moderate risk of	- Talk to the statutory authorities (F&G and DoC) and tangata		
negative interactions	whenua about the specific species interaction		
with trout	- Refer to Appendix 1 on the tools to minimise possible impacts of		
	trout predation on indigenous freshwater fish species in rivers		
Minor risk of negative	- Record the species present. No management response is generally		
interactions with	required, but recording allows monitoring to ensure risk remains		
trout	minor.		

¹ <u>https://mro.massey.ac.nz/items/3e53432f-3ceb-42f3-bdb8-61f664500541</u>

² <u>Link to:</u> DOC website: Conservation status of plants and animals

https://www.doc.govt.nz/nature/conservation-status/

Refer to Appendix 1 on the tools to minimise possible impacts of trout predation on indigenous freshwater fish species in rivers

Negative interactions between any freshwater fish species and any predator / competitor will become worse when the environment they both live in is degraded. The best way to minimise negative interactions between trout and salmon and indigenous species is to provide an abundance of diverse, good quality habitat. This means lots of clean, clear, cool water, and plenty of instream pools, runs and riffles.

Appendix 1 provides tools to help mitigate possible trout predation impacts on indigenous freshwater species. The strategies outlined in Appendix 1 are anticipated to help reduce their level of risk in the ecosystem and lower their status as a threatened species. All species will require monitoring, but the tools set out in Appendix 1 provide direction on how to respond to identified negative species interaction.

Where species are at a minor risk of negative population level impacts from trout predation, efforts to protect and enhance their habitat should still be encouraged, as this will ensure biological interactions remain low risk.

The RAM risk factors and weightings are transparent. These tables and the framework designed to deliver the risk results (vulnerability rating in Appendix 2) will need to be updated as any species risk status changes, and as future information regarding the biological and ecological needs of freshwater species becomes available, as necessary. This will help ensure efforts continue to refocus on the most critical species according to the RAM.

Species marked with an asterix (*) are species we are aware of that may be identified by tangata whenua as mahinga kai species. Management responses that are necessary to address any impacts on these species must be informed by engagement with tangata whenua in these locations.

Smelt*

Using the RAM, it is considered the risk of negative interactions with trout to be harmful to either smelt species populations is minor.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Common smelt	Not	They grow to a maximum size of 125 mm	Minor	Migrating smelt have pelagic
Retropinna retropinna	threatened	and live for a maximum of two years. They		shoaling movements through
		are diadromous and typically constrained to		the centre of waterways,
		slow velocity, lowland areas, though they		potentially increasing the risk
		can travel further inland if low gradients and		of predation by trout,
		velocities permit.		however, trout and smelt often
				co-exist, likely due to their high
Stokell's smelt	Naturally	They are a predominantly marine species	Minor	fecundity, early maturation,
Stokellia anisodon	uncommon	which can only be found in coastal		widespread dispersal, and the
		freshwater areas of the eastern South Island		generalist habitat preferences
		during spawning; they do not eat in		of smelt.
		freshwater and die after breeding.		

Eel*

Using the RAM, it is considered the risk of negative interactions with trout in causing harm to either eel populations is minor.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Longfin eel	Declining	Both species are catadromous, migrating to	Minor	Differences in feeding times
Anguilla dieffenbachii,		sea to breed as fully grown adults, with the		may reduce the likelihood of
Shortfin eel	Not	larval eels returning to freshwater systems	Minor	interaction, although during
Anguilla australis	threatened	to grow to maturity.		summer both trout and eels
		Eels are widely distributed across New		are most active during twilight.
		Zealand and are slow growing (males		While juvenile eels can migrate
		migrate to breed >25 years old and females		in shoals, their consumption by
		>40 years), long lived, nocturnal and		trout is likely to be low due to
		carnivorous.		their nocturnal and refuge
		Longfin eels are New Zealand's largest native		seeking behaviours. Adult eels
		freshwater fish: females can obtain sizes of 2		typically reside in undercut
		m long and exceed 25 kg. Large eels are the		banks and backwaters during
		apex freshwater predator of any given area		the day and are generally
		and support a significant commercial fishery		avoided by trout due to eels'
		despite their vulnerability status. Elvers		status as apex predators.
		inhabit shallow lowland habitats with loose		
		cobble substrate, while larger eels (>500		

mm) seek deep, slow flowing water and are	Large eels are piscivorous and
strongly associated with undercut banks and	aggressive hunters that
debris. Eels prefer low flows but can tolerate	frequently consume trout.
a variety of velocities.	

Pouched Lamprey*

Using the RAM, it is considered the risk of negative interactions with trout to be harmful to pouched lamprey populations is minor.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Pouched lamprey	Nationally	They are a strictly nocturnal anadromous	Minor	The pool or under boulder
Geotria australis	vulnerable	species whose adults reach a maximum of 700		habitat usage of adult lamprey
		mm long, spawn in freshwater and die after		may provide refuge from all
		protecting and aerating their eggs. The		predators except for large
		juveniles (ammocoetes) live in shaded,		longfin eels; adult lamprey are
		shallow, slow water with fine substrate into		too large to be eaten by even
		which they burrow if disturbed and filter feed		the largest trout. As trout move
		on algae and organic detritus for		upwards into the water column
		approximately four years before migrating to		to feed, and allowing that there
		sea to parasitise marine animals. They are		is no overlap of diet, it is unlikely
		located in Australia, South America and New		that the benthic ammocoetes
		Zealand where, although widely distributed,		would be exposed to predation
		they are threatened due to fish passage		by trout. The cryptic nature of

barriers and loss of freshwater spawning	lamprey makes assessing their
habitat. Adult lamprey congregate under	population abundance and
boulders, are rarely found above the substrate	distribution, difficult.
and do not feed in freshwater.	

Black Flounder*

Using the RAM, it is considered the risk of negative interactions with trout to be harmful to black flounder populations is minor.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Black flounder	Not	They are a diadromous flatfish species which	Minor	Studies examining interactions
Rhombosolea retiarii	threatened	grow to 350 mm, predominantly inhabit		between trout and black
		freshwater systems and spawn large		flounder have not been found,
		numbers of small eggs at sea. They consume		however predation risks from
		benthic invertebrates and have been		trout are likely to be restricted
		observed consuming whitebait. Flounder are		to the migration of juvenile
		widespread in coastal waterways where they		black flounder from the sea
		inhabit slow flowing sandy pools, estuaries,		into estuarine and backwater
		and lakes.		systems during. The limited
		Adults can be found up to 250km inland		information on flounder
		along low gradient, large rivers and can		abundance and late onset of
		occasionally be found in faster flowing,		breeding age (as predation

cobbled rivers. Their life expectancy is	may occur before
unknown.	reproduction) of flounder may
	increase the vulnerability of
	the species to negative impacts
	of any type.
	/ -//-
	A study in one coastal lagoon
	found many flounder bones in
	the stomachs of trout;
	however, the report concluded
	the bones were flounder
	carcasses discarded by fishers
	and solely consumed by trout
	due to scarcity of other food.
	Adult black flounder may
	interact with trout in lowland
	waterways during the
	migrations of whitebait as both
	species prey on juvenile
	whitebait, though predation of
	adult flounder by trout is
	unlikely due to the large body

	size and strict benthic
	positioning of flounder.

Diadromous galaxiids (whitebait species)*

Using the RAM, it is considered the risk of negative interactions with trout to be harmful to inanga and banded kokopu populations is <u>minor</u>, and shortjaw kokopu, giant kokopu and koaro populations is <u>moderate</u>.

Giant kokopu, koaro, inanga and banded kokopu populations can preferentially recruit within freshwater or estuarine systems. Shortjaw kokopu does not appear capable of forming landlocked populations.

Populations which preferentially breed in freshwater are at greater risk of negative impacts from anthropogenic activities than those who incorporate a marine life phase. The large bodied diadromous galaxiid species (giant kokopu, shortjaw kokopu, banded kokopu, and koaro) are slow growing and strongly favour habitat with riparian vegetation.

The increased moderate risk to shortjaw kokopu, giant kokopu and koaro reflects broad dietary, habitat and feeding habits that overlaps with trout, as well as the increased vulnerability to predation encountered by migrating galaxiids (especially juveniles), and the potential for competitive exclusion. This may partially explain limited co-occurrence patterns between the species. Habitat preferences and environmental variables will impact on spatial distributions of the species also. Populations of diadromous galaxiid species have also suffered major declines in areas where river channelisation, deforestation, wetland drainage and conversion of land to pasture have occurred.

If trout and diadromous galaxiids species are found to interact within the same freshwater body, these vulnerabilities may be offset by differences in microhabitat (i.e. the finer details of habitats used by different species such as pools or riffles, where there is a variety of quality habitat more species can coexist) and diel feeding preferences (i.e. the time of day that species typically undertake activities such as feeding, sleeping etc); the four large diadromous galaxiids species are likely to grow too big to be consumed by trout and have been observed excluding trout from preferred habitat.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Shortjaw kokopu	Nationally	They have a life span of up to 15 years,	<u>Moderate</u>	A spotlight survey of fish
Galaxias postvectis	vulnerable	maturing at 3 years, and spawning many,		assemblages in 148 streams
		large eggs. It is the rarest of the large		across northern parts of the
		galaxiids, inhabiting small, clear streams in		South Island observed trout co-
		native forests with logs or boulders as		occurrence with shortjaw
		instream cover.		kokopu at over the half the
		A survey found that shortjaw kokopu had		sites trout were present. It is,
		irregular recruitment patterns and were		however, unknown which
		widely but sparsely distributed, and often		factors, or combinations
		found in low abundance. However, the		thereof, explain the lack of co-
		species is cryptic and difficult to sample, and		occurrence at the remaining
		may more abundant than currently		sites.
		recorded. During the study, one reach was		The increased risk for shortjaw
		cleared of riparian vegetation and the		kokopu is linked to its low
		resident kokopu emigrated, despite		abundance.
		previously displaying high site fidelity. This		
		response demonstrates the importance of		
		vegetated cover to the species.		
Kōaro	Declining	They have a life span of 15+ years, females	<u>Moderate</u>	Two surveys have noted pool
Galaxias brevipinnis		spawn large numbers of small eggs. This		dwelling populations of koaro

species has excellent climbing ability which	in waterways where trout are
allows for their widespread distribution.	rare or absent, and it has been
They inhabit riffles and pools, are often	suggested that trout may
found under large boulders, are rarely found	exclude koaro from preferred
where riparian cover has been removed, and	habitats. It has been noted that
rise from the riverbed to feed in a manner	feeding time differences in
similar to trout.	Lake Taupō tributaries reduced
	competitive pressure between
	rainbow trout and koaro, but
	trout presence may have led to
	some exclusion of koaro in
	rivers with low habitat
	heterogeneity. In a series of
	experiments it was found that
	the presence of medium sized
	trout (up to 140 mm) had no
	significant effect on the growth
	rate of small, medium, or large
	kōaro over a one-month
	period, but that small koaro
	avoided both medium trout
	and large kōaro suggesting

				predator avoidance may be of
				more importance to juvenile
				koaro than competition factors
				regardless of species.
Giant kokopu	Declining	They are highly fecund, live up to 30 years	<u>Moderate</u>	Giant kokopu are regularly
Galaxias argenteus		and reach maturation after three years.		found with brown trout in the
		Juveniles inhabit backwaters adjacent to fast		same waterway but cohabit
		flowing water, adults prefer pool habitat in		less frequently at finer spatial
		slow flowing, clean, lowland waterways with		scales, potentially due the
		abundant riparian vegetation.		large size, aggressive territorial
				behaviour, and predatory
				nature of both species, or fine
				scale habitat preferences. They
				are more likely to be absent
				where trout abundance is high
				although both species were
				observed in the same pools in
				one stream. Giant kokopu have
				also been noted excluding
				trout from prime riverine
				habitat.

				The increased risk for giant
				kokopu is considered more
				vulnerable due to its late
				maturation time and almost
				identical habitat and feeding
				preferences to trout.
Īnanga	Declining	They are associated with pasture sites, slow,	Minor	Experiments on habitat use by
Galaxias maculatus		deep water, fine substrate within a gentle		inanga when trout are present
		upstream gradient from the river mouth and		show conflicting results,
		are unable to progress past instream		although inanga showed
		barriers. Inanga habitat criteria is dictated by		behavioural changes only when
		swimming ability and bio-energetic		large trout were present.
		requirements rather than the river and		Inanga show no response to
		surrounding environment as most individuals		trout odour, but actively avoid
		spend only a short time (~ seven months) in		eel odour (chemicals in water).
		freshwater. The short life span of inanga		This may be because inanga
		indicates that populations could suffer		recognise eel as a more
		serious declines should year class		significant predator, however
		recruitment falter or fail.		the behaviour is likely to
				expose inanga to higher
				predation risks by trout. One
				experiment showed predation

				by large trout on adult inanga
				at between 0-40% (mean
				14.5%).
Banded kokopu	Not	They live up to 10 years, males mature in	Minor	Trout and banded kokopu have
Galaxias fasciatus	threatened	two years, females in four – spawning large		been observed acting
		quantities of small eggs. This species often		aggressively towards each
		inhabits small pools with fine substrate and		other (trout keep territories,
		undercut banks in first and second order		banded kokopu swam in a
		streams. Banded kokopu are highly sensitive		loose shoal). Territorial and
		to suspended sediment and avoid rivers with		aggressive behaviours were
		turbid lower reaches, limiting or excluding		also noted among banded
		juvenile migration to less degraded		kokopu where the density of
		upstream habitats.		the fish was highest. It is
				possible that banded kokopu
				could be excluded from some
				habitat by large trout in
				reaches where both could co-
				occur, or alternatively that
				trout may be excluded by
				banded kokopu.

Mudfish species

The RAM considers that due to the threatened nature of mudfish species, and their small and fragmented populations, vulnerability of the species to trout (or any other) predation must be assumed to be <u>high</u>.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Canterbury mudfish	Nationally	The major driver of decline in species	<u>High</u>	Trout have been recorded
Neochanna burrowsius	critical	abundance and distribution in mudfish		consuming mudfish in one
Northland mudfish	Nationally	species is loss of their wetland habitat, with	High	study, impact of such
Neochanna heleosis	vulnerable	the exception of Chatham Island mudfish.		predation has not been
Black mudfish	Declining		High	assessed, however due to the
Neochanna diversus				threatened nature of mudfish
Brown mudfish	Declining		High	species, and their small and
Neochanna apoda				fragmented populations,
Chatham Island mudfish	Naturally		High	vulnerability of the species to
Neochanna rekohua	uncommon			trout (or any other) predation
				must be assumed to be <u>high</u> .

Torrentfish

Using the RAM, it is considered the risk of negative interactions with trout to be harmful to torrentfish populations is minor.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Torrentfish	Declining	They preferentially inhabit torrents and fast	Minor	The torrentfish generally
Cheimarrichthys fosteri		flowing riffles. The females migrate		occupy different microhabitats,
		downstream to spawn and then return to		and have widespread
		their earlier habitat; the distance migrated is		distribution and low threat
		likely to be river specific.		ranking.
				One study found a large trout
				with eight torrentfish in its
				stomach, so predation can
				occur. This predation is most
				likely during the spawning
				migrations, as large trout
				seldom inhabit torrent
				environments.

Non-diadromous galaxiids

The RAM considers risk of trout predation to populations of Central Otago roundhead, Gollum, Canterbury and alpine galaxiids to be <u>moderate</u>, and the risk to dwarf, upland longjaw, lowland longjaw, Eldon's, dusky, and the bignose and Taieri flathead galaxiids to be <u>high</u>.

These are galaxiid species which spend their entire life cycles in freshwater systems, and often have larger eggs and fry in comparison with diadromous galaxiids. They are generally cryptic and relatively unstudied, with many species only described recently based on genetic analysis (past research talks about certain species which are found later to be separate species, further confounding results of the studies).

Trout and non-diadromous galaxiids have been found coexisting in some sites particularly in locations with higher level of disturbance size and frequency, interstitial or vegetation refuges, and those sites of a size which excludes large trout. While some studies discuss the predominance of some non-diadromous galaxiid species presence above barriers to trout, non-overlapping distributions of non-diadromous species have also been noted to occur due to geomorphological changes brought about by geological and glacial processes which have isolated populations and led to the speciation noted.

There are broad diet and habitat overlaps between non diadromous galaxiids and trout, the small size of these indigenous species increases risk of predation. Those species with slower life strategies, delayed maturation, and high threat ranking are at an increased risk to any form of disturbance (biological or habitat based). While the literature is not clear on the impact trout can have, habitat preservation and restoration, and reduction of all threats to these species are of utmost importance.

If trout and galaxiid species are found to interact within the same freshwater body, the precautionary principle should be used where species are highly threatened, fragmented, or have slow life strategies and late maturation which can lead to unrecoverable population impacts by any means (predation by fish or birds, or loss of habitat).

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Lowland longjaw galaxiid	Nationally	have a life span of one year, and spawn very	High	It has been stated that lowland
Galaxias cobinitis	critical	few eggs, though in stable flow years the		longjaw galaxiids are rapidly
		population can increase in abundance		becoming restricted to areas
		rapidly. The species is only found in two river		behind barriers which exclude
		systems in northern Otago in gently flowing		large trout. Lowland longjaw
		shallow water riffle margins with plentiful		also show a significant
		interstitial spaces. Adults are adept at		preference for groundwater
		burrowing through substrate, making it		upwellings, reductions to these
		difficult to assess actual population		via abstractions or
		numbers.		groundwater changes pose a
				significant extinction threat.
Dusky galaxiid	Nationally	They are found in small, fragmented reaches	High	A survey of 14 sites where
Galaxias pullus	endangered	in eastern Otago, South Island, and can live		dusky galaxiids were present
		up to 15 years (maturing in their 4 th year).		found only one site where the
		They spawn few, very large eggs in stream		species co-occurred with trout
		edges, survival of eggs highly vulnerable to		or koaro, no information on
		any reduction in water height.		habitat variables given, the lack
				of eels at any dusky galaxiid
				site was thought to allow

				predation pressure from koaro
				or trout on dusky galaxiids.
Eldon's galaxiid	Nationally	They are found only in eastern Otago, South	High	
Galaxias eldoni	endangered	Island, and has a highly fragmented		
		populations with very restricted distribution,		
		occupying high altitude, tussockland or		
		forest streams with stony substrates. This		
		species can live for 15 years, and spawn few,		
		large eggs with the fry being large with very		
		restricted dispersal ability. Abundance and		
		distribution of Eldon's galaxiid has		
		substantially declined since 2000, rendering		
		them more vulnerable to any threats.		
Bignose galaxiid	Nationally	They are a cryptic, mostly sub-alpine species	High	Water abstraction has been
Galaxias macronasus	vulnerable	currently found in 13 sites within the Waitaki		noted as a threat to this
		River catchment, Canterbury, South Island.		species, as it reduces habitat
		Bignose galaxiids can be very abundant in		availability and potentially
		low discharge environments lacking other		removes juveniles with the
		species, so may actively avoid other species.		pumped water.
Upland longjaw galaxiid	Nationally	They inhabits braided mainstems, tributaries	High	A study has shown that upland
Galaxias prognathous	vulnerable	and springs at high elevations in central		longjaw has been noted where
		South Island. Species spawns few, small eggs		quinnat salmon, rainbow trout

		in their first year and can live for more than		and brown trout where found,
		3 years.		although scale of cohabitation
				(river, reach, or site) was not
				stated. Water abstraction
				causing loss of critical spring
				fed high altitude streams is
				heavily implicated in their
				declining population
				abundance and distribution.
Taieri flathead galaxiid	Nationally	They inhabit riffles and runs in small –	<u>High</u>	Of the other flathead galaxiid
Galaxias depressiceps	vulnerable	medium swiftly flowing tussockland streams.		species (e.g., Galaxias 'species'
		They live up to 8 years, and spawn few, large		D; Galaxias southern, and
		eggs on the underneath of boulders.		<i>Galaxias Teviot</i>) little is known
				about their biology, ecology, or
				interactions with trout. Studies
				found presence of trout
				altered the depths at which
				adult flatheads were found in
				Otago streams, and juveniles
				were more common in gravel
				substrate when trout were
				present. However gravel was

				only found in pools at trout
				sites, and juvenile Taieri
				flathead galaxiids preferentially
				inhabit pools, indicating again
				the complexities in
				determining impacts of trout
				against habitat variables and
				preferences of native fish
				species.
Dwarf galaxiid	Declining	They are widespread throughout New	<u>High</u>	Trout have been implicated in
Galaxias divergens		Zealand, adults are benthic inhabiting edged		fragmenting the range of this
		and riffles in shallow cobbled streams and		species, however dwarf
		utilise interstitial spaces in low flows.		galaxiids have been found
		Juveniles shoal in stream margins and		cohabiting with trout of any
		backwaters.		size in many parts of their
				range.
Alpine galaxiid	Nationally	They generally inhabits high altitude, fast	Moderate	Alpine galaxiids have been
Galaxias pauscipondylus	vulnerable	flowing streams of the central South Island,		noted co-occurring with
		and spawn few, large eggs in their second		quinnat salmon, rainbow trout,
		year. Juvenile recruitment is highest in		and brown trout, and presence
		permanent upwellings in small, shallow sites		of absence of trout did not
		with plentiful substrate interstitial spaces.		appear to change the

				occurrence of this species or
				alter juvenile recruitment.
Canterbury galaxiid	Declining	They are widespread throughout	<u>Moderate</u>	High fecundity and widespread
Galaxias vulgaris		Canterbury, Otago, and Southland rivers.		larval dispersal of many
		Adults become diurnal and highly aggressive		Canterbury galaxiid species
		during the breeding season. Females spawn		may assist the noted co-
		large numbers of large eggs in riffles, and		occurrence with trout,
		juveniles inhabit slow moving backwaters		however differing species
		and river margins near to adult habitat.		biology and life strategies
		Initially thought to be one species, genetic		complicated historical research
		testing has indicated there are at least 10		and knowledge.
		taxa under the umbrella name, speciation is		
		likely caused by geographical history of the		
		regions. Egg size and fecundity vary greatly		
		across the different species, those species		
		with the lowest fecundity and delayed		
		maturation rates associated with stable		
		headwater creeks, those with the fastest life		
		strategies are found in disturbed lower		
		catchment waterways.		
Central Otago roundhead	Nationally	are found in swift, shallow gravel streams or	Moderate	Brown trout and roundhead
galaxiid	endangered	small, slow, deep gravel creeks in Central		galaxiids co-occurred in some

Galaxias anomalus		Otago. The species has a moderate climbing		reaches with low slow, high
		ability, often utilises instream or bankside		risk of intermittent waterway
		cover and spawns moderate numbers of		drying, and good
		large eggs under boulders.		representation of riffles and
				runs close to the mainstem of
				the Manuherikia River, so
				disturbance may potentially
				create positive conditions for
				cohabitation.
Gollum galaxiid	Nationally	They are found in Southland, South Otago,	Moderate	Research into interactions
Galaxias gollumoides	vulnerable	and on Stewart Island. This species inhabits		between trout and Gollum
		lowland, low velocity streams and swamps		galaxiid was not found, other
		with silty substrate and emergent		research suggests water
		vegetation, adults likely spawn large		abstraction, stream
		numbers of small eggs after their first year.		channelisation, nutrient and
				sediment loading are the
				primary threats to the species.

Diadromous bully species

The RAM considers the risk of trout predation to be deleterious to common, giant, and redfin bully populations to be <u>minor</u>, and for bluegill bullies to be <u>moderate</u>. Bully species have high fecundity, multiple spawning events in a year, early maturation, wide larvae dispersal, and nest guarding behaviours which contribute to abundance and distribution of the species.

Like the diadromous galaxiids, diadromous bullies migrate between freshwater and marine environments at different stages of their life cycles. Adult bullies are benthic and occupy a wide range of habitats, the female bullies lay eggs on or under any hard surface.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Bluegill bullies	Declining	They inhabit the heads of rapids and avoid	Moderate	The patchy distribution of
Gobiomorphus hubbsi		pools, and generally migrate further inland		bluegill bullies increases the
		over their lifespan, so the oldest bullies are		risk to the species from
		found further up the catchment.		impacts from any sources,
				including trout predation.
				Threats to this species is
				primarily sediment infill of
				interstitial spaces in substrate.
Giant bully	Naturally	They are a highly fecund, slow growing	Minor	
Gobiomorphus gobiodes	uncommon	species which can live for 10 years, often		
		found in low elevations close to the sea.		
		Juveniles are likely misidentified as common		

r	1			
		bullies, and are highly cryptic, leading to		
		scarcity of information around their biology,		
		ecology, and population trends.		
Common bully	Not	They spawn large numbers of eggs,	Minor	Common bullies co-occur with
Gobiomorphus cotidianus	threatened	potentially several times a year. They are		trout of all sizes.
		widespread and abundant across their		
		ranges, however, there has been a noted		
		decline (~25%) in riverine populations		
		between 2003 and 2015.		
Redfin bully	Not	They inhabit riffles, runs, and pools in fast	Minor	They are nocturnal and will co-
Gobiomorphus huttoni	threatened	flowing, bouldery streams. This species		occur with trout, interactions
		preferentially inhabits interstitial spaces, and		have not been studied,
		infill of this may partially explain steady rate		however the species remains
		of population decline.		locally abundant where
				conditions allow.
	L			

Non-diadromous bully species

The RAM considers the risk of trout predation to be deleterious to Cran's bully populations to be <u>minor</u>, and for upland and Tarndale bully populations to be <u>moderate</u>. All species have been noted to co-occur with trout, however upland and Tarndale bullies are geographically isolated with fewer recruitment opportunities, and thus more vulnerable to any negative impacts.

Non migratory bully species live their life cycles in freshwater, and generally spawn larger eggs than diadromous bully species.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
Tarndale bully	Naturally	They inhabit the shores of five small lakes in	<u>Moderate</u>	Brown trout are present in
Gobiomorphus alpinus	uncommon	the Tarndale Hills, South Island.		several of the lakes, no
				research has been found on
				impacts of the trout on the
				bully population or
				distribution. Predominant
				threats to the species are
				sedimentation and weed
				growth.
Upland bully	Not	They are highly productive, with 8 or more	<u>Moderate</u>	Surveys have noted
Gobiomorphus breviceps	threatened	spawning events a year. Juveniles inhabit		widespread coexistence
		very slow river margins and backwaters,		between upland bully and
		adults inhabit a wide range of environments,		trout species.
		but strongly avoid areas where substrate is		
		infilled.		
Cran's bully	Not	They inhabit rocky streams in native forest,	Minor	It is considered that this
Gobiomorphus basalis	threatened	spawn a moderate abundance of large eggs		species was introduced to
		with juveniles maturing rapidly in river		several North Island lakes as
		margin habitat. This species tolerates a wide		food for trout, however no

range of conditions and can be locally	research on interactions or
abundant.	impacts of trout predation has
	been found.

Grayling

The New Zealand grayling are the only native fish species known to become extinct. As outlined in the table below, while there has been speculation that extinction was from trout, there is no evidence of this as trout were not present in many of the locations where grayling became extinct. This example is included as a reminder that evidence of species interaction and the implication of a negative risk to indigenous freshwater species is critical to understand in each particular reach before mitigation measures are decided at the local water body level. Speculative, and historical assumptions must be questioned and decisions based on best information available.

Species	Threat status	Habitat and behaviour	Risk of negative	Species interaction
			interactions with trout	
New Zealand grayling	Extinct	They were a small, shoaling, species found in	-	While trout have been
Prototroctes oxyrhynchus		abundance throughout much of the country,		implicated in their extinction,
		and was the sole native herbivorous		grayling also disappeared from
		freshwater fish species. Abundance of		isolated streams where trout
		grayling was noted to have declined		were not present, and it is
		considerably by 1870, and the last recorded		considered more likely that
		grayling sighting was in 1920.		over-harvesting of the species
				and overwhelming habitat
				modification by European
				settlers, alongside source-sink

	population dynamics, caused
	the sad loss of this unique
	species.

Environmental	Actions required	Rationale
risk factors		
Flow	Advocate for a natural flow regime, reduce water	Streamflow major variable affecting abundance and distribution of
variability	abstraction for any use, and allow a return to a natural	freshwater species. Trout only linked to significant negative impacts on
	cycle of drought and flood.	native species in stable streams. Natural flow peaks and droughts assists
		cohabitation with native species and native species spawning and
		recruitment.
Stream	Advocate for variety and variability of natural stream	Habitat heterogeneity allows cohabitation of many species, including
morphology	processes to positively influence biological diversity by	trout and native fish species across differing life stages. Edgewater
and size	providing for species specific habitat and life history	habitats increases recruitment potential to bolster populations. Dynamic
	needs. Discourage and find alternatives to channelisation	river structure vital for fish species
	and water abstraction where possible.	
Sediment and	Advocate for reduced sediment and a range of substrate	Interstitial space provides habitat, access to food, and refuge for many
substrate size	sizes, minimise sediment inputs into waterways, and allow	native fish species and is thus necessary for multi-species communities.
	riparian overhanging structures and wood inputs.	Sediment infills substrate, reduces waterway depth, and homogenizes
		habitat, which may preclude cohabitation.
Nutrients and	Advocate for minimised inputs of nutrients and pollutants	Nutrient inputs can infill waterways and interstitial spaces with aquatic
pollutants	from any source.	flora and cause hypoxic conditions overnight. Metal and chemical
		pollutants impair fish species greatly decreasing predator avoidance
		ability.

Appendix 1: Tools to moderate possible impacts of trout predation on indigenous freshwater fish species in rivers

Environmental	Actions required	Rationale
risk factors		
Source and	Tools: Correctly identify source vs sink populations and	Sink populations of species lose more individuals than they create, and
sink	connectivity between them, maintain source populations	therefore must be bolstered by immigration from healthier populations
populations	and work to bolster recruitment for sink populations.	(source populations). Sink populations are highly vulnerable to
	Ensure fish abundance alone isn't the metric for	extirpation from any threat, including trout or other predator. Source
	population health, analyse age groups and site fecundity.	populations may sustain other populations in the face of pressures.
Marine -	Advocate for increased marine - freshwater connectivity	The high incidence of diadromy in freshwater fish indicates the
freshwater	in both upstream and downstream directions and remove	importance of access between marine and freshwater environments in
connectivity	fish passage barriers where possible	replenishing freshwater communities in the face of biological and
		environmental pressures.
Riparian	Advocate for appropriate riparian vegetation extending	Many fish species require robust riparian vegetation, inputs of food and
vegetation	throughout as much as the catchment as is practicable.	woody debris as shelter can sustain inter-species cohabitation as well as
		partially mitigate other environmental impacts.
Temperature	Advocate for natural temperature fluctuations, reduce or	Water temperature outside any species preferred range overrides any
	remove anthropogenic sources of thermal pollutants into	biological interactions by changing all species behaviours (including
	waterways, ensure water abstraction does not interfere	feeding and breeding), and negative impacts of these unfavourable
	with the riverine ecosystem.	conditions will increase any impact of predation.
Trout size	While environment plays a larger role in mediating	Trout can become piscivorous once over 150mm FL. After this size, fish
	cohabitation between trout and native species, large trout	remain a small portion of trout diet (<10%, on average), and this
	(>150mm FL) in deep, stable rivers may pose a threat to	proportion is governed primarily by the abundance of small fish and the
	threatened native fish if any such are inhabiting the same	availability of refuge for the prey. Non-diadromous species with highly

Environmental	Actions required	Rationale
risk factors		
	waterbody. Therefore, removal of large trout may be	fragmented and impacted habitats need to be protected from
	occasionally required if these circumstances occur.	introductions of any large piscivorous fish, including trout.

Appendix 2: Risk Assessment Matrix

This RAM gives an objectively derived numeric score for each species based on an assessment of specific traits. The impact trout predation has on the population of each native species depends on frequency and extent of interactions with trout, population dynamics, and behaviour. Literature on species life history (how rapidly species re-populate), biology, and ecology information were used to populate this RAM. Certain risk factors were seen as more likely to cause species to be more vulnerable than others, and these were given a weighting to show this. The scores derived from this information where then grouped into highly vulnerable, moderate, and minor risk groups. This ranking shows how vulnerable each species is likely to be to population level detrimental impacts of trout predation. Those threatened, fragmented, species are highly vulnerable to extinction or extirpation from any source and need to be protected from all threats. Where adults of a species remain small, they are more likely to be able to be eaten by trout or a larger fish. Species with a slow life strategy (spawning few, large, eggs, having a low dispersion rate of individuals or breeding maturity reached after many years) are more vulnerable to losses which contribute to smaller, fragmented, or less resilient populations. Species which mature quickly, spawn many small and mobile young, and/or disperse widely, tend to have populations which are more resilient to threats, including that of predation by trout.

	Risk fact	ors and	d weigh	ntings						
Species	Overlapping mesohabitat / niche with trout	Diet similarities	Diel activity patterns	Fecundity and egg size	Age at maturity	Larval dispersal (recolonisation)	Threat ranking	Adult size	Score	Vulnerability rating
	1	1	1	2	1	2	2	2		
Dusky galaxiid (Galaxias pullus)	2	2	2	3	3	3	3	2	31	High
Lowland longjaw galaxiid (Galaxias cobinitis)	2	2	2	3	1	3	3	3	31	High
Eldon's galaxiid (<i>Galaxias eldoni</i>)	2	2	2	3	2	3	3	2	30	High
Bignose galaxiid (Galaxias macronasus)	2	2	2	3	2	3	2	3	30	High
Upland longjaw galaxiid (Galaxias prognathus)	2	2	2	3	1	3	2	3	29	High
Canterbury mudfish (Neochanna burrowsius)	2	2	1	3	2	3	3	2	29	High
Brown mudfish (Neochanna apoda)	2	2	1	3	2	3	2	2	27	High

	Risk fact	ors and	d weigh	ntings						
Species	Overlapping mesohabitat / niche with trout	Diet similarities	Diel activity patterns	Fecundity and egg size	Age at maturity	Larval dispersal (recolonisation)	Threat ranking	Adult size	Score	Vulnerability rating
	1	1	1	2	1	2	2	2		
Black mudfish (Neochanna diversus)	2	2	1	3	2	3	2	2	27	High
Northland mudfish (Neochanna heleosis)	2	2	1	3	2	3	2	2	27	High
Chatham Island mudfish (Neochanna rekohua)	2	2	1	3	2	3	2	2	27	High
Taieri Flathead galaxiid (Galaxias depressiceps)	2	2	2	2	2	3	2	2	26	High
Dwarf galaxiid (Galaxias divergens)	2	2	2	1	2	3	2	3	26	High
Roundhead galaxiid (Galaxias anomalus)	2	2	1	1	2	3	3	2	25	Moderate
Gollum galaxiid (Galaxias gollumoides)	2	2	2	1	1	3	2	3	25	Moderate
Tarndale bully (Gobiomorphus alpinus)	2	2	2	1	1	3	2	3	25	Moderate
Canterbury galaxiid (Galaxias vulgaris)	2	2	2	1	2	2	2	3	24	Moderate
Alpine galaxiid (Galaxias paucispondylus)	2	2	2	1	2	3	2	2	24	Moderate
Upland bully (Gobiomorphus breviceps)	2	2	2	3	1	2	1	2	23	Moderate
Koaro (Galaxias brevipinnis)	3	3	2	1	2	1	2	2	22	Moderate
Giant kokopu (Galaxias argenteus)	3	3	3	1	3	1	2	1	22	Moderate
Shortjaw kokopu (Galaxias postvectis)	3	3	2	1	3	1	2	1	21	Moderate
Bluegill bully (Gobiomorphus hubbsi)	2	2	2	1	1	1	2	3	21	Moderate
Inanga (Galaxias maculatus)	3	2	2	1	1	1	2	2	20	Minor
Torrentfish (Cheimarrichthys fosteri)	2	2	2	1	2	1	2	2	20	Minor
Stokell's smelt (Stokellia anisodon)	3	1	3	1	1	1	2	2	20	Minor
Banded kokopu (Galaxias fasciatus)	3	3	2	1	3	1	1	1	19	Minor
Cran's bully (Gobiomorphus basalis)	2	2	2	1	1	2	1	2	19	Minor
Common smelt (Retropinna retropinna)	3	2	3	1	1	1	1	2	19	Minor
Longfin eel (Anguilla dieffenbachii)	2	3	1	1	3	1	2	1	19	Minor

	Risk fact	ors and	d weigh	ntings						
Species	Overlapping mesohabitat / niche with trout	Diet similarities	Diel activity patterns	Fecundity and egg size	Age at maturity	Larval dispersal (recolonisation)	Threat ranking	Adult size	Score	Vulnerability rating
	1	1	1	2	1	2	2	2		
Giant bully (Gobiomorphus gobiodes)	2	2	2	1	2	1	2	1	18	Minor
Redfin bully (Gobiomorphus huttoni)	2	2	2	1	2	1	1	2	18	Minor
Shortfin eel (Anguilla australis)	2	3	1	1	3	1	1	1	17	Minor
Common bully (Gobiomorphus cotidianus)	2	2	2	1	1	1	1	2	17	Minor
Black flounder (<i>Rhombosolea retiarii</i>)	1	3	2	1	2	1	1	1	16	Minor
Pouched lamprey (Geotria australis)	1	1	1	1	3	1	2	1	16	Minor

Appendix 3: Current legislation under which Fish and Game advocate for the habitat of trout and salmon

The table below has bold text to emphasis the specific direction to protect trout and salmon habitat and ecosystem conditions.

Resource Management Act 1991	Section 7 (h)	Persons exercising functions and powers under the Act must have particular regard to the protection of the habitat of trout and salmon.
Conservation Act 1987	Section 26 B (1)	New Zealand Fish and Game Council to represent nationally the interests of anglers and hunters and provide co-ordination of the management, enhancement, and maintenance of sports fish and game.
	Section 26 P (1)	There is hereby established for the purposes of the management, maintenance, and enhancement of sports fish and game a Fish and Game Council for each region defined by the Minister under section 26A(1)(c).
	Section 26 Q (1)	 The functions of each F&G council shall be to manage, maintain, and enhance the sports fish and game resource in the recreational interests of anglers and hunters, and, in particular; a) To assess and monitor: i) Sports fish and game populations; and ii) The success rate and degree of satisfaction of users of the sports fish and game resource; and iii) The condition and trend of ecosystems as habitats for sports fish and game c) to promote and educate iii) by keeping anglers and hunters informed on matters affecting their interests e) in relation to planning i) to represent the interests and aspirations of anglers and hunters in the statutory planning process vi) to liaise with local Conservation Boards, and vii) to advocate in the interests of the Council, including its interest in habitats

National Policy Statement - Freshwater Management 2020	Section 2.1.1	 The objective of this NPS is to ensure that natural and physical resources are managed in a way that prioritises: a) First, the health and well-being of water bodies and freshwater ecosystems b) Second, the health needs of people (such as drinking water) c) Third, the ability of people and communities to provide for their social, economic, and cultural well-being, now and in the future. 				
	Section 2.2	 Policies 9. The habitats of indigenous freshwater species are protected. 10. The habitat of trout and salmon is protected, insofar as this is consistent with Policy 9. 				
	3.26 Fish Passage (3)	 When developing the policies required by subclause (2) a regional council MUST a) take into account any Freshwater Fisheries Management Plants and Sports Fish and Game Management Plans approved by the Minister of Conservation under the Conservation Act 1987; and b) seek advice from the Department of Conservation or statutory fisheries managers regarding fish habitat and population management. 				
Natural and Built Environment Bill (draft)	6AB	The habitat of trout and salmon is protected , so far as is consistent with the protection of indigenous species.				